☆ Công cụ tính tọa độ Gauss 1:25000 |
• Số hiệu → Tọa độ • |
• Tọa độ → Số hiệu • |
✡ Số hiệu → Tọa độ |
_Giả sử M có số hiệu là P-Q-X₁-X₂-X₃
_Vĩ độ: +Bán cầu bắc: $$4(P - 1) + \frac{{11 - {\mathop{\rm int}} [({X_1} - 1)/12]}}{3} + \frac{{1 - {\mathop{\rm int}} [({X_2} - 1)/2]}}{6} + \frac{{1 - {\mathop{\rm int}} [({X_3} - 1)/2]}}{{12}}$$ +Bán cầu nam: $$4P - \frac{{11 - {\mathop{\rm int}} [({X_1} - 1)/12]}}{3} - \frac{{1 - {\mathop{\rm int}} [({X_2} - 1)/2]}}{6} - \frac{{1 - {\mathop{\rm int}} [({X_3} - 1)/2]}}{{12}}$$ _Kinh độ (kết quả dương là độ kinh Tây, âm là độ kinh Đông):$$180 - 6{Q} + \frac{{11 - \bmod [({X_1} - 1)/12]}}{2} + \frac{{1 - \bmod [({X_2} - 1)/2]}}{4} + \frac{{1 - \bmod [({X_3} - 1)/2]}}{8}$$ |
---|
Ví dụ: F-30-35-C-b
_Khi đó:P=F=6; Q=30; X₁=35; X₂=C=3; X₃=b=2 _Vĩ độ:$$\matrix{ 4.(6 - 1) + \frac{{11 - {\mathop{\rm int}} [(35 - 1)/12]}}{3} + \frac{{1 - {\mathop{\rm int}} [(3 - 1)/2]}}{6} + \frac{{1 - {\mathop{\rm int}} [(2 - 1)/2]}}{{12}}\\ = 4.5 + \frac{{11 - 2}}{3} + \frac{{1 - 1}}{6} + \frac{{1 - 0}}{{12}}\\ = 23^\circ 5'00'' }$$ (23°5'00'' vĩ độ Bắc) _Kinh độ:$$\matrix{ 180 - 6.30 + \frac{{11 - \bmod [(35 - 1)/12]}}{2} + \frac{{1 - \bmod [(3 - 1)/2]}}{4} + \frac{{1 - \bmod [(2 - 1)/2]}}{8}\\ = 180 - 6.30 + \frac{{11 - 10}}{2} + \frac{{1 - 0}}{4} + \frac{{1 - 1}}{8}\\ = 0^\circ 45'00'' }$$ (0°45'00'' kinh độ Tây) |
✡ Tọa độ → Số hiệu |
_Giả sử M có tọa độ: m độ x ; n độ y
(m,n là tọa độ ; x là Bắc hoặc Nam ; y là Đông hoặc Tây) Ta tìm P-Q-X1-X2-X3 _Tính P: P= int(m/4 +1) $$\begin{array}{l} Khi\,đó:{X_{vt}} = \,\left[ {\begin{array}{*{20}{c}} {Bac:}&{3.[m - 4(P - 1){\rm{]}}}\\ {Nam:}&{3.(4P - m)} \end{array}} \right.\,\\ \Rightarrow {X_{vt}} = {\rm{\{ }}11 - {\mathop{\rm int}} {\rm{[}}({X_1} - 1)/12{\rm{]\} + }}\frac{{{\rm{\{ }}1 - {\mathop{\rm int}} {\rm{[}}({X_1} - 1)/2{\rm{]\} }}}}{2}{\rm{ + }}\frac{{{\rm{\{ }}1 - {\mathop{\rm int}} {\rm{[}}({X_1} - 1)/2{\rm{]\} }}}}{4}\,\,(1) \end{array}$$ _Tính Q: +Tây: Q= int(31 - n/6) +Đông: Q= int(31 + n/6) $$\begin{array}{l} Khi\,đó:{X_{kt}} = \,\left[ {\begin{array}{*{20}{c}} {Tay:}&{2.{\rm{[n - }}180 + 6Q{\rm{]}}}\\ {Dong:}&{2.{\rm{[ - n - }}180 + 6Q{\rm{]}}} \end{array}} \right.\,\\ \Rightarrow {X_{kt}} = {\rm{\{ }}11 - \bmod {\rm{[}}({X_1} - 1)/12{\rm{]\} + }}\frac{{{\rm{\{ }}1 - \bmod {\rm{[}}({X_1} - 1)/2{\rm{]\} }}}}{2}{\rm{ + }}\frac{{{\rm{\{ }}1 - \bmod {\rm{[}}({X_1} - 1)/2{\rm{]\} }}}}{4}\,\,(2) \end{array}$$ _Tính X1-X2-X3: giải hệ (1),(2) |
Ví dụ: 50°5'0" Bắc , 97°37'30" Tây
(Khi đã hiểu rồi thì mọi người chỉ cần bấm máy tính tầm 1 phút là tìm được đáp án thôi) Ta tìm P-Q-X1-X2-X3 _Tính P: P= int(50°5'0"/4 +1)=13 $$\begin{array}{l} Khi\,đó:{X_{vt}} = \,3.[m - 4(P - 1){\rm{]}}\, = 3.[{50^ \circ }5'0'' - 4(13 - 1){\rm{]}}\, = 6,25 = 6 + \frac{0}{2} + \frac{1}{4}\\ \Rightarrow 6 + \frac{0}{2} + \frac{1}{4} = {\rm{\{ }}11 - {\mathop{\rm int}} {\rm{[}}({X_1} - 1)/12{\rm{]\} + }}\frac{{{\rm{\{ }}1 - {\mathop{\rm int}} {\rm{[}}({X_2} - 1)/2{\rm{]\} }}}}{2}{\rm{ + }}\frac{{{\rm{\{ }}1 - {\mathop{\rm int}} {\rm{[}}({X_3} - 1)/2{\rm{]\} }}}}{4}\,\,\\ \Rightarrow \left\{ \begin{array}{l} 6 = 11 - {\mathop{\rm int}} {\rm{[}}({X_1} - 1)/12{\rm{]}}\\ 0 = 1 - {\mathop{\rm int}} {\rm{[}}({X_2} - 1)/2{\rm{]}}\\ 1 = 1 - {\mathop{\rm int}} {\rm{[}}({X_3} - 1)/2{\rm{]}} \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} 5 = {\mathop{\rm int}} {\rm{[}}({X_1} - 1)/12{\rm{]}}\\ 1 = {\mathop{\rm int}} {\rm{[}}({X_2} - 1)/2{\rm{]}}\\ 0 = {\mathop{\rm int}} {\rm{[}}({X_3} - 1)/2{\rm{]}} \end{array} \right.\,\,(1) \end{array}$$ _Tính Q: Q= int(31 - n/6)=int(31 - 97°37'30"/6)=14 $$\begin{array}{l} Khi\,đó:{X_{kt}} = 2.{\rm{[n - }}180 + 6Q{\rm{]}} = 2.{\rm{[9}}{{\rm{7}}^ \circ }{\rm{37'30'' - }}180 + 6.14{\rm{]}} = 3,25 = 3 + \frac{0}{2} + \frac{1}{4}\\ \Rightarrow 3 + \frac{0}{2} + \frac{1}{4} = {\rm{\{ }}11 - \bmod {\rm{[}}({X_1} - 1)/12{\rm{]\} + }}\frac{{{\rm{\{ }}1 - \bmod {\rm{[}}({X_2} - 1)/2{\rm{]\} }}}}{2}{\rm{ + }}\frac{{{\rm{\{ }}1 - \bmod {\rm{[}}({X_2} - 1)/2{\rm{]\} }}}}{4}\,\,(2)\\ \Rightarrow \left\{ \begin{array}{l} 3 = 11 - \bmod {\rm{[}}({X_1} - 1)/12{\rm{]}}\\ 0 = 1 - \bmod {\rm{[}}({X_2} - 1)/2{\rm{]}}\\ 1 = 1 - \bmod {\rm{[}}({X_3} - 1)/2{\rm{]}} \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} 8 = \bmod {\rm{[}}({X_1} - 1)/12{\rm{]}}\\ 1 = \bmod {\rm{[}}({X_2} - 1)/2{\rm{]}}\\ 0 = \bmod {\rm{[}}({X_3} - 1)/2{\rm{]}} \end{array} \right.\,\,(2) \end{array}$$ _Tính X1-X2-X3: Từ (1),(2) ta có: $$\left\{ \begin{array}{l} \left\{ \begin{array}{l} 5 = {\mathop{\rm int}} {\rm{[}}({X_1} - 1)/12{\rm{]}}\\ 8 = \bmod {\rm{[}}({X_1} - 1)/12{\rm{]}} \end{array} \right. \Rightarrow {X_1} - 1 = 5.12 + 8 = 68 \Leftrightarrow {X_1} = 69\\ \left\{ \begin{array}{l} 1 = {\mathop{\rm int}} {\rm{[}}({X_2} - 1)/2{\rm{]}}\\ 1 = \bmod {\rm{[}}({X_2} - 1)/2{\rm{]}} \end{array} \right. \Rightarrow {X_2} - 1 = 1.2 + 1 = 3 \Leftrightarrow {X_2} = 4\\ \left\{ \begin{array}{l} 0 = {\mathop{\rm int}} {\rm{[}}({X_3} - 1)/2{\rm{]}}\\ 0 = \bmod {\rm{[}}({X_3} - 1)/2{\rm{]}} \end{array} \right. \Rightarrow {X_3} - 1 = 0.2 + 0 = 0 \Leftrightarrow {X_3} = 1 \end{array} \right.$$ Vậy P-Q-X1-X2-X3 là 13-14-69-4-1 = N-14-69-D-a |