Snack's 1967



...Date : 20-01-2021...
Cực trị hàm 2 biến
✪ Định nghĩa :
${M_0}({x_0};{y_0})$ là điểm cực trị của hàm $z=f(x;y)$ Nếu với mọi điểm $M({x_0} + \Delta x;{y_0} + \Delta y)$ là lân cận của ${M_0}({x_0};{y_0})$ thì ta luôn có :
$\Delta f = f({x_0};{y_0}) - M({x_0} + \Delta x;{y_0} + \Delta y)$ không đổi dấu, Với : $$\left[ \matrix{ \Delta f \ge 0 \Rightarrow \matrix{ {{M_0}}&{là}&{điểm}&{cực}&{đại} }\\ \Delta f \le 0 \Rightarrow \matrix{ {{M_0}}&{là}&{điểm}&{cực}&{tiểu} } } \right.$$ (M là lân cận của ${M_0}$ khi $\Delta x$,$\Delta y$ khá nhỏ).
✪ Quy tắc tìm cực trị:
Giả sử hàm số $z=f(x;y)$ có các đạo hàm riêng đến cấp 2 liên tục trong lân cận của điểm dừng $(M_0(x_0;y_0)$
Đặt $\matrix{ {A = z''_{xx}}&;&{B = z''_{xy}}&;&{C = z''_{yy}} }$
Khi đó: $$\left[ \matrix{ \left\{ \matrix{ {B^2} - AC < 0\\ \matrix{ {A > 0}&{({\rm{or}}}&{C > 0)} } } \right. \Rightarrow \matrix{ {{M_0}}&{là}&{điểm}&{cực}&{tiểu} }\\ \left\{ \matrix{ {B^2} - AC < 0\\ \matrix{ {A < 0}&{({\rm{or}}}&{C < 0)} } } \right. \Rightarrow \matrix{ {{M_0}}&{là}&{điểm}&{cực}&{đại} }\\ {B^2} - AC > 0 \Rightarrow \matrix{ {Hàm}&{không}&{đạt}&{cực}&{trị}&{tại}&{{M_0}} }\\ {B^2} - AC = 0 \Rightarrow \matrix{ {Dùng}&{định}&{nghĩa}&{để}&{xác}&{định} } } \right.$$ ✪ Các bước làm bài :
  ●Bước 1 :Giải hệ phương trình
$$\left\{ \matrix{ z{'_x} = 0\\ z{'_y} = 0 } \right. \Rightarrow \matrix{ {Tìm}&{được}&{nghiệm}&{({x_1};{y_1})}&{({x_2};{y_2})}&{...}&{({x_n};{y_n})} }$$   ●Bước 2 :Tìm các đạo hàm cấp 2. $$\left\{ \matrix{ A = z'{'_{xx}}\\ B = z'{'_{xy}}\\ C = z'{'_{yy}} } \right.$$   ●Bước 3 :Xét các điểm nghiệm $({x_1};{y_1})$, $({x_2};{y_2})$,...,$({x_n};{y_n})$ để tính A, B, C và xem nó thuộc trường hợp nào để tính và kết luận

Ví dụ 1 :
Tìm cực trị hàm số $z = 2{x^4} + {y^4} - 4{x^2} + 2{y^2}$
(Bài 7-Đề 1-Giải tích I cuối kì BKHN-K59)
Bài làm:
  ● Ta có : $$\left\{ \matrix{ z{'_x} = 8{x^3} - 8x = 0\\ z{'_y} = 4{y^3} + 4y = 0 } \right. \Leftrightarrow \left[ \matrix{ \left\{ \matrix{ x = - 1\\ y = 0 } \right.\\ \left\{ \matrix{ x = 0\\ y = 0 } \right.\\ \left\{ \matrix{ x = 1\\ y = 0 } \right. } \right.$$ Suy ra có 3 điểm nghi ngờ ${M_1}( - 1;0),{M_2}(0;0),{M_3}(1;0)$
  ● Đặt :
$$\matrix{ A = z'{'_{xx}} = 24{x^2} - 8\\ B = z'{'_{xy}} = 0\\ C = z'{'_{yy}} = 12{y^2} + 4 }$$
  ● Xét các điểm nghi ngờ
_Tại ${M_1}( - 1;0)$ : $$\matrix{ \matrix{ {A = 16,}&{B = 0,}&{C = 4} }\\ \Rightarrow \left\{ \matrix{ {B^2} - AC = - 64 < 0\\ A > 0 } \right. }$$ Suy ra hàm đạt cực tiểu tại ${{M_1}( - 1;0) \Rightarrow {z_{CT}} = z( - 1;0) = - 2}$
_Tại ${M_2}(0;0)$ : $$\matrix{ \matrix{ {A = - 8,}&{B = 0,}&{C = 4} }\\ \Rightarrow {B^2} - AC = 32 > 0 }$$ Suy ra hàm không đạt cực trị tại ${M_2}(0;0)$
_Tại ${M_3}(1;0)$ : $$\matrix{ \matrix{ {A = 16,}&{B = 0,}&{C = 4} }\\ \Rightarrow \left\{ \matrix{ {B^2} - AC = - 64 < 0\\ A > 0 } \right. }$$ Suy ra hàm đạt cực tiểu tại ${{M_3}(1;0) \Rightarrow {z_{CT}} = z(1;0) = - 2}$

Ví dụ 2 :
Tìm cực trị hàm số $$z = 2{x^2} + 3{y^2} - {e^{ - ({x^2} + {y^2})}}$$ (Bài 7-Đề 3-Giải tích I cuối kì BKHN-K59)
Bài làm:
  ● Ta có : $$\left\{ \matrix{ z{'_x} = 4x + 2x{e^{ - ({x^2} + {y^2})}} = 0\\ z{'_y} = 6y + 2y{e^{ - ({x^2} + {y^2})}} = 0 } \right. \Leftrightarrow \left\{ \matrix{ x = 0\\ y = 0 } \right.$$ Suy ra có 1 điểm nghi ngờ ${M_1}(0;0)$
  ● Đặt :
$$\left\{ \matrix{ A = z''_{xx} = 4 + 2{e^{ - ({x^2} + {y^2})}} - 4{x^2}{e^{ - ({x^2} + {y^2})}}\\ B = z''_{xy} = - 4xy{e^{ - ({x^2} + {y^2})}}\\ C = z''_{yy} = 6 + 2{e^{ - ({x^2} + {y^2})}} - 4{y^2}{e^{ - ({x^2} + {y^2})}} } \right.$$
  ● Xét các điểm nghi ngờ
_Tại ${M_1}(0;0)$ : $$\matrix{ \matrix{ {A = 6,}&{B = 0,}&{C = 8} }\\ \Rightarrow \left\{ \matrix{ {B^2} - AC = - 48 < 0\\ A > 0 } \right. }$$ Suy ra hàm đạt cực tiểu tại ${{M_1}(0;0) \Rightarrow {z_{CT}} = z(0;0) = - 1}$

Ví dụ 3 :
Tìm cực trị hàm số $$z = {x^3} - \frac{3}{2}{y^4} - 3x{y^2}$$ (Bài 10-Đề 6-Giải tích I cuối kì BKHN-K60)
Bài làm:
  ● Ta có : $$\left\{ \matrix{ z{'_x} = 3{x^2} - 3{y^2} = 0\\ z{'_y} = -6{y^3} - 6xy = 0 } \right. \Leftrightarrow \left[ \matrix{ \left\{ \matrix{ x = 0\\ y = 0 } \right.\\ \left\{ \matrix{ x = -1\\ y = 1 } \right.\\ \left\{ \matrix{ x = -1\\ y = - 1 } \right. } \right.$$ Suy ra có 3 điểm nghi ngờ ${M_1}(0;0)$, ${M_2}(-1;1)$, ${M_3}(-1;-1)$
  ● Đặt :
$$\left\{ \matrix{ A = z''_{xx} = 6x\\ B = z''_{xy} = -6y\\ C = z''_{yy} = -18{y^2} - 6x } \right.$$
  ● Xét các điểm nghi ngờ
_Tại ${M_1}(0;0)$ : $$\matrix{ \matrix{ {A = 0,}&{B = 0,}&{C = 0} }\\ \Rightarrow {B^2} - AC = 0 }$$ Suy ra ta phải dùng định nghĩa
Giả sử $N(0 + \Delta x;0 + \Delta y)$ là lân cân của ${M_1}(0;0)$ Khi đó : $$\matrix{ \Delta z = z(0;0) - z(0 + \Delta x;0 + \Delta y) = z(0;0) - z(\Delta x;\Delta y)\\ \Leftrightarrow \Delta z = - {(\Delta x)^3} + \frac{3}{2}{(\Delta y)^4} + 3(\Delta x).{(\Delta y)^2}\\ \left\{ \matrix{ \Delta x > 0,\Delta y = 0\matrix{ :&{\Delta z < 0} }\\ \Delta x < 0,\Delta y = 0\matrix{ :&{\Delta z > 0} } } \right. }$$ $ \Rightarrow \Delta z$ đã đổi dấu trong lân cận ${M_1}(0;0)$
Suy ra hàm không đạt cực trị tại ${M_1}(0;0).$
_Tại ${M_2}(-1;1)$ : $$\matrix{ \matrix{ {A = -6,}&{B = -6,}&{C = -12} }\\ \Rightarrow \left\{ \matrix{ {B^2} - AC = -36< 0\\ A<0 } \right. }$$ Suy ra hàm đạt cực đại tại ${M_2}(-1;1) \Rightarrow {z_{CT}} = z(-1;1) = \frac{1}{2}$
_Tại ${M_3}(-1;-1)$ : $$\matrix{ \matrix{ {A = -6,}&{B = 6,}&{C = -12} }\\ \Rightarrow \left\{ \matrix{ {B^2} - AC = -36 < 0\\ A<0 } \right. }$$ Suy ra hàm đạt cực đại tại ${M_3}(-1;-1) \Rightarrow {z_{CT}} = z(-1;-1) = \frac{1}{2}$
Có thể bạn quan tâm
ღ Lưu ý: Mình chỉ sử dụng Fanpage Theza2 để bình luận. Mọi nick khác đều không phải mình.
Mình hiện tại có những việc riêng phải bận cho cuộc sống của mình, sẽ không còn thường xuyên hồi đáp các bình luận, mong được lượng thứ..

...
1/19/1930/31098