...Date : 20-01-2021...
Tìm tiệm cận
✪ Phương pháp:
_Tính giới hạn của x, y tại các điểm không tầm thường ($ \pm \infty $ và các giá trị ở điều kiện xác định của hàm số)
+Với hàm $y=f(x)$ ta tính giới hạn của y theo x
+Với hàm tham số $\left\{ \matrix{ x = f(t)\\ y = g(t) } \right.$ ta tính giới hạn của cả x và y theo t
_Lưu ý: Nếu giới hạn phải và trái tại điểm đang xét khác nhau thì phải tính riêng ra từng giới hạn một, nếu bằng nhau thì tính chung một giới hạn.
✪ Các loại tiện cận :
 ●($m,n$ là các giá trị xác định)
$x$ $\infty$ $\infty$ $n$ $n$
$y$ $\infty$ $m$ $\infty$ $m$
t/c Có thể tồn tại tiện cận xiên:
$y=ax+b$ với:
$a=lim(y/x)$
$b=lim(y-ax)$
Tiện cận ngang:
$y=m$
Tiện cận đứng:
$x=n$
Không xác định

✪Các bước làm bài :
  ●Bước 1 :Nêu tập xác định (TXĐ).
  ●Bước 2 :Tính giới hạn tại các điểm không tầm thường
  ●Bước 3 :Kết luận

Ví dụ 1 :
Tìm tiện cận đường cong : $$y = x{e^{\frac{1}{x}}}$$ (Bài 5-Đề 3-Giải tích I giữa kì BKHN-K58)
Bài làm:
  ● TXĐ: $D = R\backslash \{ 0\} $
(Ta tính giới hạn tại $ \infty $ và 0)
  ●Ta có:
  _$\mathop {\lim }\limits_{x \to {0^ - }} y = \mathop {\lim }\limits_{x \to {0^ - }} x{e^{\frac{1}{x}}} = 0$(Không xác định)
  _$\mathop {\lim }\limits_{x \to {0^ + }} y = \mathop {\lim }\limits_{x \to {0^ + }} x{e^{\frac{1}{x}}} = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{{e^{\frac{1}{x}}}}}{{\frac{1}{x}}}\mathop = \limits^{(L)} \mathop {\lim }\limits_{x \to {0^ + }} \frac{{\frac{{ - {e^{\frac{1}{x}}}}}{{{x^2}}}}}{{\frac{-1}{x^2}}} = + \infty $
   Suy ra tiện cận đứng bên phải: $x=0$
  _$\mathop {\lim }\limits_{x \to \infty } y = \mathop {\lim }\limits_{x \to \infty } x{e^{\frac{1}{x}}} = \infty$
   $ \Rightarrow $ Có thể tồn tại tiệm cận xiên:$y=ax+b$ Với : $$\matrix{ a = \mathop {\lim }\limits_{x \to \infty } \frac{y}{x} = \mathop {\lim }\limits_{x \to \infty } {e^{\frac{1}{x}}} = 1\\ b = \mathop {\lim }\limits_{x \to \infty } (y - ax) = \mathop {\lim }\limits_{x \to \infty } (x{e^{\frac{1}{x}}} - x) = \mathop {\lim }\limits_{x \to \infty } \frac{{{e^{\frac{1}{x}}} - 1}}{{\frac{1}{x}}} = 1 }$$
    Suy ra tiệm cận xiên: $y=x+1$

Ví dụ 2 :
Tìm tiện cận của hàm số sau : $$y = {x^2}\sin \frac{2}{x}$$ (Bài 8-Đề 3-Giải tích I giữa kì BKHN-K59)
Bài làm:
  ● TXĐ: $D = R\backslash \{ 0\} $
(Ta tính giới hạn tại $ \infty $ và 0)
  ●Ta có:
  _$\mathop {\lim }\limits_{x \to 0} y = \mathop {\lim }\limits_{x \to 0} {x^2}\sin \frac{2}{x} = 0$(Không xác định)
  _$\mathop {\lim }\limits_{x \to \infty } y = \mathop {\lim }\limits_{x \to \infty } {x^2}\sin \frac{2}{x} = \mathop {\lim }\limits_{x \to \infty } \frac{{\sin \frac{2}{x}}}{{\frac{1}{{{x^2}}}}} = \mathop {\lim }\limits_{x \to \infty } \frac{{\frac{2}{x}}}{{\frac{1}{{{x^2}}}}} = \infty $
   $ \Rightarrow $ Có thể tồn tại tiệm cận xiên:$y=ax+b$ Với : $$\matrix{ a = \mathop {\lim }\limits_{x \to \infty } \frac{y}{x} = \mathop {\lim }\limits_{x \to \infty } x\sin \frac{2}{x} = \mathop {\lim }\limits_{x \to \infty } \frac{{\sin \frac{2}{x}}}{{\frac{1}{x}}} = \mathop {\lim }\limits_{x \to \infty } \frac{{\frac{2}{x}}}{{\frac{1}{x}}} = 2\\ b = \mathop {\lim }\limits_{x \to \infty } (y - {\rm{ax)}} = \mathop {\lim }\limits_{x \to \infty } ({x^2}\sin \frac{2}{x} - 2x) = \mathop {\lim }\limits_{x \to \infty } \frac{{x\sin \frac{2}{x} - 2}}{{\frac{1}{x}}} = 0 }$$
    Suy ra tiệm cận xiên: $y=2x$

Ví dụ 3 :
Tìm tiện cận của hàm số sau : $$\left\{ \matrix{ x = \frac{{2016t}}{{1 + {t^3}}}\\ y = \frac{{2016{t^2}}}{{1 + {t^3}}} } \right.$$
Bài làm:
  ● ĐKXĐ: $t \ne \{ -1\} $
(Ta tính giới hạn với $t$ tại $ \infty $ và -1)
  ●Ta có:
  _Với $t \to \infty$
  $\matrix{ \mathop {\lim }\limits_{t \to \infty } x = \mathop {\lim }\limits_{t \to \infty } \frac{{2016t}}{{1 + {t^3}}} = \mathop {\lim }\limits_{t \to \infty } \frac{{2016t}}{{{t^3}}} = \mathop {\lim }\limits_{t \to + \infty } \frac{{2016}}{{{t^2}}} = 0\\ \mathop {\lim }\limits_{t \to \infty } y = \mathop {\lim }\limits_{t \to \infty } \frac{{2016{t^2}}}{{1 + {t^3}}} = \mathop {\lim }\limits_{t \to \infty } \frac{{2016{t^2}}}{{{t^3}}} = \mathop {\lim }\limits_{t \to + \infty } \frac{{2016}}{t} = 0 }$
(Không xác định)
  _Với $t \to -1$
  $\matrix{ \mathop {\lim }\limits_{t \to - 1} x = \mathop {\lim }\limits_{t \to - 1} \frac{{2016t}}{{1 + {t^3}}} = \infty \\ \mathop {\lim }\limits_{t \to - 1} y = \mathop {\lim }\limits_{t \to - 1} \frac{{2016{t^2}}}{{1 + {t^3}}} = \infty }$
   $ \Rightarrow $ Có thể tồn tại tiệm cận xiên:$y=ax+b$ Với : $$\matrix{ a = \mathop {\lim }\limits_{t \to - 1} \frac{y}{x} = \mathop {\lim }\limits_{t \to - 1} \frac{{2016{t^2}}}{{2016t}} = - 1\\ b = \mathop {\lim }\limits_{t \to - 1} (y - {\rm{ax) = }}\mathop {\lim }\limits_{t \to - 1} (y + {\rm{x)}} = \mathop {\lim }\limits_{t \to - 1} \frac{{2016{t^2} + 2016t}}{{1 + {t^3}}} = \mathop {\lim }\limits_{t \to - 1} \frac{{4032t + 2016}}{{3{t^2}}} = - 672 }$$
    Suy ra tiệm cận xiên: $y=-x-672$
Có thể bạn quan tâm
ღ Lưu ý: Mình chỉ sử dụng Fanpage Theza2 để bình luận. Mọi nick khác đều không phải mình.
Mình hiện tại có những việc riêng phải bận cho cuộc sống của mình, sẽ không còn thường xuyên hồi đáp các bình luận, mong được lượng thứ..

...
1/5/115/6743







XtGem Forum catalog